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Societal Impact of Foundation Models
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TRANSPARENCY CONCEPTS CHANGE



Outline
Ø Transparency

üHELM (today)
üHALIE (in 3 weeks, Mina Lee et al., 2022)

ØConcepts
üEmergence (in 2 weeks, Jason Wei et al., 2022)
üTrust (Bommasani, Liang, 2022)

ØChange
üPower (Bommasani, 2022)
üPolicy (Bommasani, Zhang, T. Lee, Liang, 2023)
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LMs are important
• Research

• Basically every NLP paper that builds a model uses an LM
• Directly used in other AI subareas, motivating new trends (do RL as “language 

modeling”), and even other disciplines (protein language models)

• Deployment
• Used in flagship products with billions of users (e.g. Bing, Google Translate, 

Microsoft Word)
• Used in some of the most promising emerging tech (e.g. Github CoPilot)
• The focus of the newest and likely most aggressively funded AI startups (AI21, 

Anthropic, Character, Cohere, Hugging Face, Inflection, …)
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Yet we don’t understand them
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CRFM
• 300+ researchers, 40+ faculty

• 10+ academic departments
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https://crfm.stanford.edu/people.html


Benchmarking
Benchmarks orient AI. They set priorities and codify values.

Benchmarks are mechanisms for change.

"proper evaluation is a complex and challenging business"
- Karen Spärck Jones (ACL Lifetime Achievement Award, 2005)

Spärck Jones and Galliers (1995), Liberman (2010), Ethayarajh and Jurafsky (2020), Bowman and Dahl 
(2021), Raji et al. (2021), Birhane et al. (2022), Bommasani (2022) inter alia
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Language model:
Blackbox – no assumptions on how it is built, etc.

Inputs: Text
Outputs: Text with probabilities (likelihood)

Bommasani 12



HELM design principles
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1. Broad coverage and recognition of incompleteness

2. Multi-metric

3. Standardization



Principle 1: Broad coverage
First taxonomize, then select
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Principle 2: Multi-metric
Measure all metrics simultaneously to expose relationships/tradeoffs
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Benchmarking paradigms
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Accuracy, 1 dataset Accuracy, several datasets Many metrics, many datasets



Principle 3: Standardization
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Important considerations
• How you adapt the LM (e.g. prompting, probing, fine-tuning) matters

• Different LMs might work in different regimes

• Hard to ensure models are not contaminated (exposed to test data/distribution)

• We don’t evaluate all models, and models are constantly being built (e.g. ChatGPT)
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Evaluation at scale
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• 40+ scenarios across 6 tasks (e.g. QA) + 7 targeted evals (e.g. reasoning)

• 7 metrics (e.g. robustness, bias)

• 30+ models (e.g. BLOOM) from 12 organizations (e.g. OpenAI)

Costs

• 5k runs

• 12B tokens, 17M queries

• $38k USD for commercial APIs, 20k A100 GPU hours for public models



Primitives
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Scenario
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Adaptation
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Metrics
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Scenario Taxonomy
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Task selection
• Unilingual (English)

• Unimodal (text)

• User-facing
• Question Answering
• Summarization
• Information Retrieval
• Sentiment Analysis
• Toxicity Detection
• Miscellaneous Text Classification
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Example scenario: CivilComments
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Desiderata/Metrics
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Desiderata/Metric Selection
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Example metric: Calibration
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Scenarios x metrics
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Targeted Evaluations
• Language

• Language modeling
• Minimal pairs

• Knowledge
• Knowledge-intensive QA
• Fact completion

• Reasoning
• Synthetic/purer reasoning

• Ampliative
• Non-ampliative
• Recursive hierarchy
• State tracking

• Realistic/situated reasoning

• Copyright

• Disinformation

• Bias/Stereotypes

• Toxicity
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Models
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Hardware (public models)
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Adaptation via prompting
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Model rankings
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Accuracy vs X
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Metric relationships
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Accuracy as a function of time

Bommasani 38



Accuracy as a function of access
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Variance across seeds
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In-context examples
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Multiple-choice method

Bommasani 42



Robustness (contrast sets)
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Summarization
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Disinformation
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Next steps
• Add scenarios, models, metrics we missed

• Already added text-davinci-003, new AI21 and Cohere models
• Adding FLAN-T5, OPT-IML this month
• Some progress on other closed models (Google, DeepMind)
• Some progress on ChatGPT (hard with rate limits/no API)

• Monolingual (non-English) + Multilingual
• Some support in-progress for various MT, multilingual/cross-lingual datasets

• Dialogue/assistant-type models
• Vision, vision + text models
• Other foundation models
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HALIE
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Centering interaction
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Interactive tasks
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Coverage of design space
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Social Dialogue
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Interactive QA
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Crossword Puzzles
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Harms that arose in practice
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Discussion
• Low-latency very important for human experience

• Interactive study design is much harder (e.g. user adaptation)

• How does human-human and human-machine language change over time?
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Trust
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Lots of bias metrics, little trust
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Testing Protocol to Accrue Trust
• Measurement modeling (Loevinger, 1957; Messick, 1987, Jackman, 2008, …)

• Widespread use in many social sciences

• Specific criteria to ensure measures are valid and reliable

Bommasani 58



Face validity
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Predictive Validity
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Hypothesis validity
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Evaluation for Change
• Evaluation is a force

• Power comes from adoption
• Once evaluations gain influenced,
reified as standards (e.g. ImageNet)

• Other forces (e.g. resources)
• Resources > Evaluation for LMs/FMs

• Scaling laws (i.e. efficient allocation mindset)
• Evaluation better enables pluralism

• Power
• Evaluation’s power is legitimate
• Evaluation’s power is unevenly distributed

• Time is ripe to use evaluation to drive change
• Evaluations are less costly (few-shot)
• Community-driven eval (BIG-bench, EleutherAI, GEM, UD)
• More value/recognition assigned to evaluations than 5 years ago
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Policy
• Ground policy decisions in concrete evaluations

• I.e. public discourse on AI often is untethered to actual results

• Need transparency on models not released at all (e.g. PaLM)

• Need to be multidimensional, standardizing

• Interplay between access, evaluation/auditing, and transparency
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