Generative AI for Constructive Communication

Evaluation and New Research Methods
Agenda

Mina Lee

Zoom talk
Q&A after her talk

Second half of class:

5 minute break

Feedback notes

Break after talks, assignments focused on project

Human Subjects Research

Lecture
Human subject research for LM-based applications
Scope of this lecture

Our goal is to summarize practical advice on measuring the impact of your work on people. We’ll cover many subjects, each of which can stand on its own as a whole course! There are links to more reading throughout this presentation.

Outline:

- [10 min] Motivation + examples
- [5 min] Ethics / IRB
- [5 min] Methods: Surveys
- [5 min] Methods: Interviews
- [10 min] Methods: Randomized control trials
- [5 min] Platforms and resources
Always keep in mind how extraordinary the data in our field is.
It’s full of people!

(400,000 humans at Woodstock Music and Art Fair; Bethel, New York, 1969)
Every stage is full of people!

- **People** write the words that LMs are trained on
- **People** express the preferences that we use to fine-tune these LMs
- **People** provide the labels that let us evaluate these LMs
- **People** decide which applications to create
- **People** use these applications
- **People** are impacted by this usage

How do these people relate to each other, and how can we best serve them?
What is human subject research?

Studies in which real human beings are affected or observed.

“Interventional”

“Observational”
What is human subject research?

Studies in which real human beings are affected or observed. They vary in scope, method, and scale.
Evaluation landscape for LM-based applications

- Intrinsic LM eval
- Task-specific benchmark eval
- Application eval (pre-deployment)
- Application eval (user)
- Longitudinal user study
- Target population study
- General population impact study

Scope of impact measured
Evaluation landscape: “Chatbot for lawyers” app example

- Intrinsic LM eval
- Task-specific benchmark eval
- Application eval (pre-deployment)
- Application eval (user)
- Longitudinal user study
- Target population study
- General population impact study

How well does the LM predict the next word? (LM perplexity)

Can the LM write factual, fluent legal briefs? (HELM metrics)

Do users write good briefs with it? (e.g., HALIE framework)

Do lawyers adopt it into their workflows?

Do law firms change their hiring?

Do people trust the justice system?
Evaluation landscape: “Chatbot for lawyers” app example

- Intrinsic LM eval
- Task-specific benchmark eval
- Application eval (pre-deployment)
- Application eval (user)
- Longitudinal user study
- Target population study
- General population impact study

How well does the LM predict the next word? (LM perplexity)
Can the LM write factual, fluent legal briefs? (HELM metrics)
Do users write good briefs with it? (e.g., HALIE framework)
Do lawyers adopt it into their workflows?
Do law firms change their hiring?
Do people trust the justice system?
Recent examples of LM-oriented human subject research

- **Interventional**
 - **Randomized control trial** measuring how ChatGPT impacts productivity
 Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence (+ appendix)
 - **A/B experiments** in chatbots
 Understanding the user experience of customer service chatbots: An experimental study of chatbot interaction design

- **Observational**
 - **Surveys** of teachers about chatbots in the classroom
 Teachers and Students Embrace ChatGPT for Education
 - **Interviews** with users of customer service chatbots
 What Makes Users Trust a Chatbot for Customer Service? An Exploratory Interview Study
 - **User studies** of users of chatbots on different websites (2018)
 Evaluating and Informing the Design of Chatbots
 - **Correlational study** of LM probabilities with eye tracking and reading time data
 On the Predictive Power of Neural Language Models for Human Real-Time comprehension Behavior
Recent examples of LM-oriented human subject research

- **Interventional**
 - Randomized control trial measuring how ChatGPT impacts productivity
 - Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence (+ appendix)

- **A/B experiments**
 - Understanding the user experience of customer service chatbots: An experimental study of chatbot interaction design

- **Observational**
 - Surveys of teachers
 - Teachers and Students Embrace ChatGPT for Education
 - Interviews with users of customer service chatbots
 - What Makes Users Trust a Chatbot for Customer Service? An Exploratory Interview Study
 - User studies of users of chatbots on social media
 - Evaluating and Informing the Design of Chatbots
 - Correlational study of LM probabilities with eye tracking and reading time data
 - On the Predictive Power of Neural Language Models for Human Real-Time comprehension Behavior

![Graph showing average response ratings](image)
Recent examples of LM-oriented human subject research

- **Interventional**
 - **Randomized control trial** measuring how ChatGPT impacts productivity

 Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence (+ appendix)

 - **A/B experiments** in chatbots

 Understanding the user experience of customer service chatbots: An experimental study of chatbot interaction design

- **Observational**
 - **Surveys** of teachers and students

 Teachers and Students Embrace ChatGPT for Education

 - **Interviews** with users of customer service chatbots

 What Makes Users Trust a Chatbot for Customer Service? An Exploratory Interview Study

 - **User studies** of users of chatbots on social media

 Evaluating and Informing the Design of Chatbots

 - **Correlational study** of LM probabilities with eye tracking and reading time data

 On the Predictive Power of Neural Language Models for Human Real-Time Comprehension Behavior

<table>
<thead>
<tr>
<th>N=35</th>
<th>Interaction mechanism</th>
<th>Mean</th>
<th>SD</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
<th>Effect size (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anthropomorphism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buttons</td>
<td>4.39</td>
<td>1.33</td>
<td>1.39</td>
<td>34</td>
<td>.17</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Free text</td>
<td>4.00</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social presence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buttons</td>
<td>4.71</td>
<td>1.57</td>
<td>1.07</td>
<td>34</td>
<td>.29</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Free text</td>
<td>4.39</td>
<td>1.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hedonic quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buttons</td>
<td>4.67</td>
<td>0.73</td>
<td>2.35</td>
<td>34</td>
<td><0.05</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Free text</td>
<td>4.37</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pragmatic quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buttons</td>
<td>5.54</td>
<td>1.19</td>
<td>2.17</td>
<td>34</td>
<td><0.05</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>Free text</td>
<td>5.06</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recent examples of LM-oriented human subject research

- **Interventional**
 - Randomized control trial measuring how ChatGPT impacts productivity
 - Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence
 - A/B experiments in chatbots
 - Understanding the user experience of customer service chatbots

- **Observational**
 - Surveys of teachers about chatbots in the classroom
 - Teachers and Students Embrace ChatGPT for Education
 - Interviews with users of customer service chatbots
 - What Makes Users Trust a Chatbot for Customer Service? An Exploratory Interview Study
 - User studies of users of chatbots on different websites (2018)
 - Evaluating and Informing the Design of Chatbots
 - Correlational study of LM probabilities with eye tracking and reading time data
 - On the Predictive Power of Neural Language Models for Human Real-Time comprehension Behavior

Key Findings

- **Most teachers, and many students, are already using ChatGPT for their job.**

 A 51% majority of teachers report using ChatGPT, with higher usage among Black (69%) and Latino (69%) teachers. This includes 40% of teachers who use it weekly and 10% who use it almost every day.

 Three in ten teachers have used it for lesson planning (30%), coming up with creative ideas for classes (30%), and building background knowledge for lessons and classes (27%). Middle school and high school teachers are more likely to have used ChatGPT for lesson planning (38% and 35%, respectively), brainstorm for ideas (38% and 34%), and build background knowledge (31% and 34%) than pre-K and elementary school teachers.

 A third of students 12-17 say they’ve used ChatGPT for school (33%), including 47% of those 12-14.
Recent examples of LM-oriented human subject research

- **Interventional**
 - Randomized control trial measuring how ChatGPT impacts productivity
 - Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence
 - A/B experiments in chatbots
 - Understanding the user experience of customer service chatbots: An experimental study of chatbot interaction design

- **Observational**
 - Surveys of teachers about chatbots in the classroom
 - Teachers and Students Embrace ChatGPT for Education
 - Interviews with users of customer service chatbots
 - What Makes Users Trust a Chatbot for Customer Service? An Exploratory Interview Study
 - User studies of users of chatbots on different websites (2018)
 - Evaluating and Informing the Design of Chatbots
 - Correlational study of LM probabilities with eye tracking and reading time data
 - On the Predictive Power of Neural Language Models for Human Real-Time comprehension Behavior

However, five of the participants also noted that them becoming regular users of chatbots for customer service in part depended on their own interest in technology and new services. That is, their future use of chatbot may not only depend on the chatbot as such but also on themselves as users.

I have very strong belief in this. I am a user because I want to show my support to the technology as I am quite interested in information technology. (P5)

N=13
Recent examples of LM-oriented human subject research

- **Interventional**
 - Randomized control trial measuring how ChatGPT impacts productivity
 - Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence
 - A/B experiments in chatbots
 - Understanding the user experience of chatbot interaction design

- **Observational**
 - Surveys of teachers about chatbots in the classroom
 - Teachers and Students Embrace ChatGPT for Education
 - Interviews with users of customer service chatbots
 - What Makes Users Trust a Chatbot for Customer Service?
 - User studies of users of chatbots on different websites (2018)
 - Evaluating and Informing the Design of Chatbots
 - Correlational study of LM probabilities with eye tracking and reading time data
 - On the Predictive Power of Neural Language Models for Human Real-Time comprehension Behavior

CONCLUSION

We define chatbots as text-based, turn-based, task-fulfilling programs, embedded within existing platforms. Our study, involving 16 participants interacting with 8 pre-selected chatbots for the first-time, over three days, spanning almost 10,000 messages, revealed that expectations of users were not met. Participants were either disappointed or frustrated with mediocre natural language capabilities and the limited set of features offered by the chatbots. The comments for the high-rated chatbots provided directions for improvements. Clarifying a chatbot’s capabilities, supporting context resolution for dialog efficiency, managing dialogue failures, engaging in small talk, and ending conversation gracefully, are some of the guidelines for chatbot designers. We expect the results from our work to inform and guide the design of future chatbots. N=16
Recent examples of LM-oriented human subject research

- **Interventional**
 - Randomized controlled trials measuring productivity
 - Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence (+ appendix)
 - A/B experiments in chatbots
 - Understanding the user experience of customer service chatbots: An experimental study of chatbot interaction design

- **Observational**
 - Surveys of teachers
 - Teachers and Students Embrace ChatGPT for Education
 - Interviews with users
 - What Makes Users Trust a Chatbot for Customer Service? An Exploratory Interview Study
 - User studies of users on social media
 - Evaluating and Informing the Design of Chatbots
 - Correlational study of LM probabilities with eye tracking and reading time data
 - On the Predictive Power of Neural Language Models for Human Real-Time comprehension Behavior

![Graph showing slow down in reading (ms) vs “Surprisal” of word]
Human subject research: ethics
Three principles of ethical human subject research (The Belmont Report)

- **Respect for Persons**
 - Requirement for autonomy
 - Requirement to protect those with diminished autonomy

- **Beneficence**
 - Do no harm
 - Maximize possible benefits

- **Justice**
 - Fairness in selection of research subjects
 - Fairness in distribution of research benefits
Institutional Review Board (IRB)

“The purpose of IRB review is to assure, both in advance and by periodic review, that appropriate steps are taken to protect the rights and welfare of humans participating as subjects in the research”

At MIT, our IRB is called Committee on the Use of Humans as Experimental Subjects (https://couhes.mit.edu/).

Research protocols that involve human subjects must be approved by COUHES prior to the start of research. Submit online via https://couhes-connect.mit.edu/
Additional Information

This survey is part of a research study conducted by Shakked Noy and Whitney Zhang at the Massachusetts Institute of Technology (MIT) Economics Department. The research aims to understand the determinants of people’s productivity on writing tasks. Your participation in this study is completely voluntary and you can choose to withdraw at any time without any penalty or consequence. If you volunteer to participate, we will assign you questions and writing tasks as described above, and ask you to sign up for an online account. We do not anticipate any risks or discomforts in the survey. The research may involve risks that are currently unforeseeable. We anticipate the study will provide benefits to society by enabling a better understanding of the determinants of productivity.

If you have any concerns or comments about this study, you can contact the researchers at snoy@mit.edu or zhangww@mit.edu. You can contact the MIT Committee on the Use of Humans as Experimental Subjects at couhes@mit.edu.

Data from this survey may be made public. We will remove Prolific IDs and all identifying information before posting the data, to maintain confidentiality.

Consent language from Noy and Zhang’s study
COUHES review categories

- **Exempt review**
 - “Benign intervention” or analysis of existing data; minimal risk; no PII
 - *Most* surveys or educational tests qualify for exempt review. Those involving deception, embarrassment, or children may not. Those in which subjects are prisoners never do.
 - Still **must submit a form to COUHES**; PI approval required.

- **Expedited review**
 - Minimal risk intervention
 - Reviewed on rolling basis

- **Full committee review**
 - Reviewed at monthly board meetings

(See https://couhes.mit.edu/definitions for more)
Human subject research: Observational Methods

1) Surveys
2) Interviews
Surveys

- Useful for assessing people’s **opinions**, **behaviors**, and **experiences**

- **Pros**: Easy to deploy online; low/benign impact on subject

- **Cons**: Many sources of bias to be aware of! Less versatile than interviews.

- Three good resources on how to design surveys:
 - [Harvard’s tip sheet](https://www.hss.harvard.edu/harvard-surveys)
 - [Methods of Study Designs- Observational Studies & Surveys](https://www.sciencedirect.com/science/article/pii/B9780123737119500265)
Case study: ChatGPT in the workplace (Noy, Zhang)

Their research question: What kinds of professionals benefit the most and the least from exposure to ChatGPT in terms of satisfaction, efficacy, and productivity?

Their surveys asked:

- Demographics (employment status, income)
- Objective measures of experience, job tenure
- Subjective skill assessment
- Familiarity with other software
- How much did you enjoy doing the task?
- How skilled/effective did you feel while doing the task?
- How long did it take you to do the task?
Case study: ChatGPT in the workplace (Noy, Zhang)

Their research question: What kinds of professionals benefit the most and the least from exposure to ChatGPT in terms of satisfaction, efficacy, and productivity?

Their surveys asked:

- Demographics (employment status, income)
- Objective measures of experience, job tenure
- Subjective skill assessment
- Familiarity with other software
- How much did you enjoy doing the task?
- How skilled/effective did you feel while doing the task?
- How long did it take you to do the task?
Case study: ChatGPT in the workplace (Noy, Zhang)

D.2.13 Realism

On a scale of 1-5, how realistically does this sample task imitate real tasks that managers do?

Please give us your honest assessment. Please also ignore whether the specific situation is realistic; we are interested in whether the overall task of writing a mass email to employees to persuade on a sensitive topic is realistic, not whether the specific topic is realistic.

Very Unrealistic, Unrealistic, Neutral, Realistic, Very Realistic

Closed question

What is your current employment status?
- Employed fulltime
- Employed part-time
- Unemployed and looking for work
- Not looking for work

Open question

What is your annual salary in your main job? (Or y) please convert to a rough annual salary by multiplying

Dollars
Total Survey Error framework

Goal of TSE is to maximize data quality given a fixed budget.

“Total survey error = representation errors + measurement errors”

Errors come from who we ask: (“Representation”)

- Sampling bias
- Non-response bias

...and how we ask them: (“Measurement”)

- Question wording biases
- Question ordering biases
- Social desirability bias
- Acquiescence bias

See: Bit by Bit: Social Research in the Digital Age (Salganik)
 Total Survey Error: Design, Implementation, and Evaluation (Biemer)
 Nonresponse rates on open-ended survey questions vary by demographic group, other factors (Pew)
In 2003 more people favored civil unions when asked after a question about same-sex marriage

% of U.S. adults

<table>
<thead>
<tr>
<th>Asked first</th>
<th>Legal agreements</th>
<th>%</th>
<th>Gay marriage</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favor</td>
<td>37</td>
<td></td>
<td>Favor</td>
<td>33</td>
</tr>
<tr>
<td>Oppose</td>
<td>55</td>
<td></td>
<td>Oppose</td>
<td>61</td>
</tr>
<tr>
<td>Don’t know</td>
<td>8</td>
<td></td>
<td>Don’t know</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asked second</th>
<th>Gay marriage</th>
<th>Legal agreements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favor</td>
<td>30</td>
<td>Favor</td>
</tr>
<tr>
<td>Oppose</td>
<td>58</td>
<td>Oppose</td>
</tr>
<tr>
<td>Don’t know</td>
<td>12</td>
<td>Don’t know</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Survey conducted October 2003.

PEW RESEARCH CENTER
Human subject research: Observational Methods

1) Surveys
2) Interviews
Qualitative methods

You can learn a lot from… talking to people.

Want to know what educators think of ChatGPT?

You could ask them!

Anonymized interviews are often exempt sources of research data.
Interview research

In brief:

- Decide who you’re interviewing
- Plan interview guide - what will you ask about?
- Collect notes (according to IRB approval, might need to be anonymous)
- Do qualitative coding:
 - Inductive: look at the data, derive themes from the data, label themes in the data
 - Deductive: start with a list of themes, label the data with list of themes
- Analyze!
 - Describe the data, perform statistical analysis, etc.

[If you want more details on this, come talk to us!]
How do text to image models affect design?

Qualitative and quantitative methods can support each other, and you can come to the same conclusions using different methods.

A true story:

“Green red and white buildings in front of a shiny river with a white fence on the side”

User creates sculpture

User creates sculpture

Trash to Treasure: Using text-to-image models to inform the design of physical artefacts
A Smith, H Schroeder, Z Epstein, M Cook, S Colton, A Lippman
The AAAI-23 Workshop on Creative AI Across Modalities
Mixed methods research:

“Green red and white buildings in front of a shiny river with a white fence on the side”

User

Interviewer asks the user:
Did this image inform your design?

Interviewer takes notes

Model generates image

Researcher synthesizes answers, pulls out and analyzes themes

Participants are using prompting for different purposes!
Creating and applying qualitative codes to interviews

Identified 3+ “styles”

EXPLORER

Labeled 30 participants by hand based on their 3 prompts

REPHRASER

REFINER

Trash to Treasure: Using text-to-image models to inform the design of physical artefacts
A Smith, H Schroeder, Z Epstein, M Cook, S Colton, A Lippman
The AAAI-23 Workshop on Creative AI Across Modalities
Mixed methods research

Quantitative version:

Quantified degree of “conceptual exploration” using average cosine distance over 3 prompts
Mixed methods research

Findings reinforced each other!

Point is:
- There are multiple versions of every project
- Choose methods that match your background and goals!
Human subject research: Interventional methods

1) Randomized Controlled Trials (RCTs)
A Case Study

Research Question: What are the productivity effects of ChatGPT in the context of mid-level professional writing tasks? (Noy and Zhang 2023)
Three Elements of an RCT

- Randomization
- Pre-ordained outcome measures
- Blinding
RCTs: Randomization

Why can’t we just observe people that use ChatGPT and those who don’t?

- Send out a survey to MIT students that asks them to partake in the study
- Measure “writing productivity” for the students that do/don’t use ChatGPT and compare the two groups

Selection bias!

“occurs when individuals or groups in a study differ systematically from the population of interest leading to a systematic error in an association or outcome.” (Catalog of Bias, Oxford University)

Confounding!

“Confounding variables are those that affect other variables in a way that produces spurious or distorted associations between two variables. They confound the “true” relationship between two variables.” (ICPSR, University of Michigan)
RCTs: Randomization

What can we do instead?

- Less experienced writers
- More experienced writers

Initial Sample

Use ChatGPT
- Less experienced writers
- More experienced writers

Don't use ChatGPT
- Less experienced writers
- More experienced writers

This is NOT what we want!
RCTs: Randomization

What can we do instead?

- Less experienced writers
- More experienced writers

Initial Sample

Use ChatGPT

Don’t use ChatGPT

This is what we want!
RCTs: Preordained outcome measures

Decide what/how you want to measure before you run your RCT

- Be precise and exhaustive on your data collection and analysis before you run your experiment
- Most of the thinking should be done before running your experiment
- What other data would you want to collect?
 - Demographics
 - Writing experience
- Negative results are positive results!
 - Most experiments don’t work, which is totally fine
RCTs: Blinding

Who knows what about the experiment?

- **Single blind**
 - Only the researcher knows who got what treatment (e.g. surgery)

- **Double blind**
 - Neither the researcher nor the subject knows who got what treatment
 - Ideal case
 - Least chance of bias
RCTs: Practical Analysis Tips

- Include **attention** checks!
 - Were your participants actually doing what you asked?
- Ensure **proper randomization**
 - E.g. are the groups balanced on demographics?
- Did all **subjects comply** with the treatment?

- **Plot the difference** between treatment and control outcomes, and have a sense for what is a “big deal”
 - Don’t rely only on p-values
- **Plot the distribution** of outcomes
 - Is it very skewed?
- **Use regressions** to control for any confounders not balanced by randomization
- **Qualitative analysis** is great! Can collect comments from survey participants
 - Hypothesis for mechanism; why did the intervention work?
RCTs
Human subject research: platforms

1) Crowdworking platforms
2) Survey design platforms
3) Other resources
Platform: **Amazon Mechanical Turk**

- Oldest and most popular “crowdsourcing marketplace”.

- **Requestors** post “High Intelligence Tasks” such as surveys that **Workers** complete these for pay

- ~250k workers, 90% in U.S.

- Workers can be selected based on self-reported **qualifications** such as age, location, political affiliation, education, and many more.

- Good for reaching a large group quickly; bad for having them do hard tasks.

(Here’s a good presentation from [UMich](https://umich.edu) about MTurk)
Platform: **Prolific**

- More targeted at academic research in behavioral sciences. Better when you need survey responses or have a longer-duration task.

- More modern UI than MTurk.

- Generally higher data quality. See: [Data quality of platforms and panels for online behavioral research](#)
Tips about crowd-work platforms in general

- Guard against fraud:
 - Some workers lie about qualifications in order to answer survey
 - Some workers rush through surveys in order to get rewards more quickly

- Tips for improving data quality:
 - Increase qualifications required (e.g., MTurk “Master” status)
 - Attention checks
 - Golden data
 - For a good guide on these and other data annotation practices, see section 3 in Human-in-the-Loop Machine Learning. (Copy available here)

- Always measure inter-annotator agreement

- Pay fairly! At least the prevailing minimum wage in the location of the worker.

Also see:
- Online panels in social science research: Expanding sampling methods beyond Mechanical Turk
- The Perils of Using Mechanical Turk to Evaluate Open-Ended Text Generation
Platform: Qualtrics

- Survey design / deployment tool
- Nice GUI supporting common randomization / looping logic
- Can pair with MTurk/Prolific to recruit respondents
- Includes library of time-tested demographic questions
- MIT has a license. Set up your account at https://qualtrics.mit.edu/
MIT’s Behavioral Research Lab

Offers MIT researchers assistance with recruitment of research study participants, both on online platforms and in their own “participant pool”

See: https://brl.mit.edu/
Logistics

Next week:
Media Lab Research Panel
In person!

Reminders:
Project 1 pager due Friday!
Sign up for office hours
Homework is light this week and due Monday
Out-takes

(Topics we didn’t get to cover)
Human subject research: A/B experiments in industry
A/B experiments in industry

“A/B experiment”: industry jargon for an RCT in which the test hypothesis is whether a change to an application leads to a change in some business criterion.

Typically:

- **Control** = status quo; **Treatment** = proposed change (e.g., use a new LM to score search results)
- **Experimental unit** is some unit of activity of the application (e.g. users, sessions, search queries)
- **Key metrics** are defined based on this activity (e.g. click-through rate, active days per user, “like” rate)
- Some “**overall evaluation criterion**” (OEC) is defined in terms of the key metrics
- Change is launched if OEC(treatment) > OEC(control) at some level of confidence

- [Building a Culture of Experimentation (HBR)](https://hbr.org/2012/11/building-a-culture-of-experimentation)
- [Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing](https://searchengineland.com/trustworthy-online-controlled-experiments-a-practical-guide-to-ab-testing-33838)
A/B experiments in industry: Facebook case study

“Emotional contagion experiments” in 2012:

- Control → User gets normal news feed
- Treatment → Some fraction of “positive” or “negative” posts omitted
- Users who had negative posts reduced made more positive status updates
- …and vice versa

(2014 PNAS paper)

Also: Everything We Know About Facebook’s Secret Mood-Manipulation Experiment
A/B experiments in industry: Google example

Diagram source: [Experimentation platforms at scale (Ambiata)](https://www.ambiata.ai/)

Incoming request R has cookie C

\[f(C, \text{layer}_1) \% 1000 = m_1 \]

\[f(C, \text{layer}_2) \% 1000 = m_2 \]

and conditions T

<table>
<thead>
<tr>
<th>ads layer</th>
<th>search layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>yellow, black (control)</td>
<td>suggest: on (control)</td>
</tr>
<tr>
<td>yellow, blue</td>
<td>suggest: off</td>
</tr>
<tr>
<td>blue, black</td>
<td></td>
</tr>
<tr>
<td>blue, green</td>
<td></td>
</tr>
<tr>
<td>green, black</td>
<td></td>
</tr>
</tbody>
</table>
Implementation Science

How can an evidence-based intervention reach a larger population?

Efficacy trials vs. Effectiveness trials [more]

Concepts:
- Fidelity: How much does the implemented EBI looks like the original plan?
- Sustainability: Will the value of EBI sustain over time?

Work from the developing world

See District outreach paper

Implementation Science at a Glance (NIH)
Preregistration

The Preregistration revolution

Also see
https://docs.google.com/presentation/d/11pmZ5jPFdZOGPyTrzmr1eBSJvtVgDgCYs8VNMg89vlw/edit#slide=id.p
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Typical 1st order concern (developer-focused)</th>
<th>2nd order (immediate impact on user)</th>
<th>3rd order (long-term impact on user)</th>
<th>4th order (collective behavior)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Making a new social network</td>
<td>Does it get a lot of usage?</td>
<td>Do users report that they enjoy the time they spend on it?</td>
<td>Do users strengthen their bonds with their local community through it?</td>
<td>Is affective polarization reduced by the existence of this social network?</td>
</tr>
<tr>
<td>Adding “autocomplete” to a search input box</td>
<td>Do people make more searches when the auto-complete suggestions are enabled?</td>
<td>How often do the users find the suggestions useful?</td>
<td>Are users seeing diverse perspectives over time?</td>
<td>Does misinformation spread less rapidly?</td>
</tr>
<tr>
<td>Adding a “read receipts” feature on a messaging app</td>
<td>Do I get more installs when this feature is offered?</td>
<td>Do users keep the feature turned on?</td>
<td>Is the user’s anxiety reduced?</td>
<td>Are relationships strengthened with the knowledge from this feature?</td>
</tr>
<tr>
<td>Putting ads on a webpage</td>
<td>Does it make more money than before?</td>
<td>Are people buying things from the ads?</td>
<td>Are people buying things they actually need?</td>
<td>Do we avoid incentivizing “clickbait” content?</td>
</tr>
</tbody>
</table>
Natural Experiments

What can we do instead?
- Less experienced writers
- More experienced writers

Initial Sample

This is what we want!

What if “nature” gives us this split?

Use ChatGPT

Don’t use ChatGPT
Natural/Quasi Experiments:

“The prefix quasi means “resembling.” Thus quasi-experimental research is research that resembles experimental research but is not true experimental research. Although the independent variable is manipulated, participants are not randomly assigned to conditions or orders of conditions (Cook & Campbell, 1979, Research Methods in Psychology)”
Natural/Quasi Experiments: Examples

- **Social Media and Mental Health (Braghieri, Levy, Makarin)**
 - Leveraged the **differential rollout** of Facebook across college campuses to estimate the effect of its introduction on student mental health

- **The Persuasive Effect of Fox News: Non-Compliance with Social Distancing During the COVID-19 Pandemic (Simonov, Sacher, Dubé, Biswas)**
 - Used the fact that **channel numbers** are **randomly assigned** (?) to estimate the effect of Fox News viewership on non-compliance with social distancing

- **Large-Scale Psychological Differences Within China Explained by Rice Versus Wheat Agriculture (Talhelm et al.)**
 - Geographic quasi-experiment
 - Used villages on “**rice-wheat**” **border** to test the effect of the type of farming on different psychological traits
Natural/Quasi Experiments: Pros and Cons

Pros

- No need to recruit participants
- Often larger sample size
- Test hypothesis that would be unethical to test with an RCT (e.g. smoking)

Cons

- “Plausibly random” is not random
- Often missing key confounding variables
- Very little flexibility to collect more data
Figure 1.3 A simple hierarchy of evidence for assessing the quality of trial design (Greenhalgh 2014)